Spatial gradient in TTX sensitivity of axons at the crayfish opener neuromuscular junction.
نویسنده
چکیده
At the crayfish opener neuromuscular junction, axons branch repeatedly before synapsing onto muscle fibers as varicosities. Excitability of these axons was examined with two-electrode current clamp before and after partial block of Na(+) channels with 1 nM tetrodotoxin. 4-Aminopyridine (200 μM) was added to homogenize nonuniformity in K(+) channel density. The impact of tetrodotoxin was evaluated in terms of action potential (AP) amplitude, rate of rise, and threshold. All three parameters were more severely affected at the secondary than the primary branching point (BP). Both BPs fired continuously during 1-s current steps before tetrodotoxin. After tetrodotoxin, the secondary BP fired only in brief bursts, whereas the primary BP still fired continuously. Despite this diminished excitability at the secondary BP, no failure in orthodromic AP conduction was observed. AP waveform at terminals (AP(f)) was examined with voltage indicators. For orthodromic APs, reduction in AP amplitude and prolongation of AP rise time in tetrodotoxin were more pronounced in terminals than at the secondary BP. For APs initiated at the secondary BP, AP(f) sometimes failed to show a spikelike waveform in tetrodotoxin. This degraded AP(f) was not due to averaging variable AP invasion into terminals, because the variance of AP(f) traces did not increase in tetrodotoxin. Tetrodotoxin applied in the absence of 4-aminopyridine showed an impact on the distal axon similar but less distinct than that recorded with 4-aminopyridine. In conclusion, the distal axon is more sensitive to tetrodotoxin than the proximal axon, such that AP waveform degrades as it propagates toward terminals in tetrodotoxin.
منابع مشابه
Na+ current in presynaptic terminals of the crayfish opener cannot initiate action potentials.
Action potential (AP) propagation in presynaptic axons of the crayfish opener neuromuscular junction (NMJ) was investigated by simultaneously recording from a terminal varicosity and a proximal branch. Although orthodromically conducting APs could be recorded in terminals with amplitudes up to 70 mV, depolarizing steps in terminals to -20 mV or higher failed to fire APs. Patch-clamp recordings ...
متن کاملTonic activation of presynaptic GABAB receptors in the opener neuromuscular junction of crayfish.
Release of excitatory transmitter from boutons on crayfish nerve terminals was inhibited by (R,S)-baclofen, an agonist at GABAB receptors. Baclofen had no postsynaptic actions as it reduced quantal content without affecting quantal amplitude. The effect of baclofen increased with concentration producing 18% inhibition at 10 microM; EC50, 50% inhibition at 30 microM; maximal inhibition, 85% at 1...
متن کاملPhysiologically identified 5-HT2-like receptors at the crayfish neuromuscular junction.
The model synaptic preparation of the crayfish opener neuromuscular junction is known to be responsive to exogenous application of 5-HT. The primary effect of 5-HT is an enhancement of vesicular release from the presynaptic motor nerve terminal. 5-HT is known to act through an IP(3) cascade which suggests the presence of a 5-HT(2) receptor subtype; however, this is based on vertebrate 5-HT rece...
متن کاملRole of a-SNAP in Promoting Efficient Neurotransmission at the Crayfish Neuromuscular Junction
He, Ping, R. Chase Southard, Dong Chen, S. W. Whiteheart, and R. L. Cooper. Role of a-SNAP in promoting efficient neurotransmission at the crayfish neuromuscular junction. J. Neurophysiol. 82: 3406–3416, 1999. In this manuscript, we address the role of the soluble N-ethylmaleimide sensitive factor attachment protein (aSNAP) in synaptic transmission at the neuromuscular junction of the crayfish ...
متن کاملRole of alpha-SNAP in promoting efficient neurotransmission at the crayfish neuromuscular junction.
In this manuscript, we address the role of the soluble N-ethylmaleimide sensitive factor attachment protein (alpha-SNAP) in synaptic transmission at the neuromuscular junction of the crayfish opener muscle. Immunochemical methods confirm the presence of alpha-SNAP in these preparations and show that it is concentrated in the synaptic areas. Microinjection and electrophysiological studies show t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 109 1 شماره
صفحات -
تاریخ انتشار 2013